

Published on Web 03/17/2006

Supramolecular Probe for Bicarbonate Exhibiting Anomalous Pyrene Fluorescence in Aqueous Media

Iwao Suzuki,* Mihoko Ui, and Akiyo Yamauchi

Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan

Received August 23, 2005; E-mail: isuzuki@mail.pharm.tohoku.ac.jp

In the last two decades, noteworthy developments in supramolecular chemistry have resulted in molecular assemblies capable of recognizing both neutral and ionic species.¹ Whereas the recognition of ionic species in organic media is well documented, that in aqueous media remains a challenging task because the highly polar nature of an aqueous solution weakens the driving forces for capturing ionic species, except metal coordination. Several excellent metal-free receptors for ionic species that function well in aqueous media have appeared.² For instance, cationic polyamines are wellestablished receptors for anionic phosphates and carboxylates.³ However, the examples of receptors that bind other inorganic anions in aqueous media are limited.⁴ In particular, studies of the recognition and sensing of bicarbonate (HCO₃⁻) in aqueous media are few and far between,⁵ despite the fact that HCO_3^- is a physiologically important anion that plays vital roles in not only maintaining the pH of biological fluids but also signal transduction in intracellular events.⁶ In this communication, we report a novel fluorescent receptor for HCO₃⁻ based on a cyclodextrin (CD) dimer. Our approach involves the complexation of HCO₃⁻ with an association dimer of the γ -CD derivative (1) in which a triamine linker connects the pyrene residue to the γ -CD. The association dimer formed from monocationic 1 (1_2^{2+}) at pH 7–9 is an excellent receptor for HCO₃⁻, emitting anomalous pyrene fluorescence that is not induced by other anions.

Chart 1. Structure of 1

The fluorescence spectra of 1 in borate buffer (pH 8.6) are shown in Figure 1A. 1 alone exhibited typical pyrene fluorescence around 370-400 nm together with strong excimer-like fluorescence centering at 475 nm (spectra a). The latter fluorescence resulted from the formation of an association dimer, as observed in previously reported pyrene-appended γ -CDs.⁷ When NaHCO₃ was added, a new fluorescence band appeared around 390-460 nm (spectra b). The changes in fluorescence intensity at 425 nm in the presence of several anions are shown in Figure 1B. Of note is that, except for HCO₃⁻, none of the anions investigated induced the new fluorescence band. The buffer component H2BO3⁻ did not affect the fluorescence of 1, as confirmed by comparison of the fluorescence of 1 in borate buffer with that in an unbuffered solution at the same pH. As a result, we conclude that the new fluorescence band is exclusively induced by HCO₃⁻. Although the triamine linker of 1 may function as a tridentate ligand for transition metal cations, Zn²⁺ (used as sulfate) alone or in the presence of 10 mM HCO₃⁻ had no effect on the fluorescence of 1. Moreover, the presence of a large excess of KCl or NaCl alone or with HCO₃⁻ had no effect

Figure 1. (A) Fluorescence spectra of $1 (3.0 \times 10^{-5} \text{ M})$ alone (blue) and in the presence of 10 mM NaHCO₃ (red) in borate buffer (pH 8.6). (B) Fluorescence intensity changes of $1 (3.0 \times 10^{-5} \text{ M})$ induced by several anions (10 mM) at pH 8.6.

Figure 2. Circular dichroism spectra of **1** alone $(3.0 \times 10^{-5} \text{ M}, \text{ blue})$ or in the presence of HCO₃⁻ (10 mM, red) in borate buffer (pH 8.6).

on the fluorescence of **1**, although either of the two salts at high concentrations (>0.5 M) slightly increased the total fluorescence of **1**, presumably due to the ionic strength effect. This indicates that the countercation effect is limited. The high selectivity of **1** for HCO₃⁻ was further examined in tolerance experiments; none of the anions investigated (10 mM) altered the fluorescence of **1** in the presence of HCO₃⁻. This indicates that other anions did not bind to **1**. In terms of sensitivity, **1** could detect 1 mM HCO₃⁻ in water, when the LOD (limit of detection) is defined as $(F_{salt} - F_0)/F_0 > 0.3$ at 425 nm.

The potential of the association dimer of **1** as a fluorescent receptor for HCO_3^- is also supported by circular dichroism (cd) experiments. Figure 2 shows the cd spectra of **1** in borate buffer (pH 8.6). **1** alone showed weak positive cd bands due to the ${}^{1}B_{b}$ (250–300 nm) and ${}^{1}L_{a}$ (300–350 nm) transitions of pyrene, whereas the addition of HCO_3^- changed the cd spectrum drastically, increasing the intensity of the ${}^{1}B_{b}$ band and splitting both the ${}^{1}B_{b}$ and ${}^{1}L_{a}$ bands. The large change in the cd spectrum of **1** was observed only in the pH range of 7–10 (Figure S12). As H₂CO₃

Figure 3. Proposed association behavior between 1 and HCO_3^- .

and HCO_3^- have pK_a values of 6.4 and 10.4, respectively, H_2CO_3 and CO_3^{2-} are not responsible for the large change in the cd spectrum of **1**. A similar dependence on pH was observed for the fluorescence spectra. Together, the results strongly indicate that the association dimer of **1** is an excellent fluorescent receptor for HCO_3^- in water.

The monomer of 1 is not responsible for the anomalous fluorescence because, under diluted conditions ([1] = 3×10^{-7} M, pH 8.6) where 1 existed predominantly as a monomer, no appreciable spectral change was observed on adding HCO3⁻, except for a 1.5-fold increase in the monomer fluorescence intensity.⁸ Thus, the formation of the association dimer is critical to the anomalous fluorescence induced by HCO₃⁻. Compound 1 has $pK_{a1} = 5.67$, $pK_{a2} = 6.88$, and $pK_{a3} = 9.81$ and forms two association dimers $(\mathbf{1}_2^{2^+}$ between p K_{a2} and p K_{a3} , and $\mathbf{1}_2$ between p K_{a3} and pH 12 where the dissociation of the association dimer occurs). Moreover, the response of 1 to HCO_3^- was observed at pH 8.6. Accordingly, 1_2^{2+} is the association dimer that interacts with HCO₃^{-.9} The formation of $\mathbf{1}_2^{2+}$ forces the triamine linker to form a pseudo azacrown ring with one charged ammonium group (β -NH₂⁺) and two neutral amino groups (ζ -NH and κ -NH). The numbers of the charges and hydrogen bonding sites of the triamine linker may be suitable for binding HCO_3^- and not other anions.

With regard to the anomalous fluorescence induced by HCO₃⁻, the split cd bands observed in the presence of HCO₃⁻ are regarded as exciton coupling patterns, indicating that the two pyrene rings of $\mathbf{1}_2^{2+}$ assume a twisted conformation.¹⁰ By contrast, the lack of exciton coupling patterns in the absence of HCO3⁻ indicates that the two pyrene rings of $\mathbf{1}_2^{2+}$ assume a completely parallel conformation. Thus, HCO_3^- binding to the triamine linker of $\mathbf{1}_2^{2+}$ changes the conformation of the pyrene rings from parallel to twisted. This conformational change of the two pyrene rings of $1_2^{2^+}$ decreases the overlap of the π surfaces, resulting in the shift of the excimer fluorescence band to the shorter wavelength region. It is noteworthy that trans-1,8-bis(1-pyrenyl)naphthalene, in which the two pyrene residues assume an imperfectly stacked conformation, emits fluorescence at 400 and 425 nm.11 These peak positions are similar to those of the HCO₃⁻-induced fluorescence band of 1_{2}^{2+} . The HCO₃⁻-induced conformational change of the pyrene residues, as seen in the cd spectra, was also supported by the UVvisible absorption, fluorescence excitation, and ¹H NMR spectra (Figures S10, S11, and S14, respectively).

On the basis of the above discussion, we proposed the association behavior between 1 and HCO₃⁻, as illustrated in Figure 3. It should be noted that neither the stoichiometry (1:1 or 1:2) nor the association constant of the $1_2^{2+}/\text{HCO}_3^-$ complex could be determined owing to the complicated equilibrium. Although we showed 1:2 complexation for $1_2^{2+}/\text{HCO}_3^-$, the possibility of 1:1 complexation should not be excluded.

In conclusion, we demonstrated herein that the association dimer of **1** showed excellent characteristics for selective recognition and sensing of HCO_3^- , thereby inducing the new fluorescence band. Our fluorescent receptor is advantageous for determining $HCO_3^$ in physiological fluids because it exhibits HCO_3^- sensing ability even at pH 7.4, although the stronger fluorescence of the monomer than that at pH 8.6 slightly obscures the HCO_3^- -induced anomalous fluorescence.

Acknowledgment. This work was supported by Grant-in-Aids for Scientific Research (15659006 and 16790030) from the Ministry of Education, Science, Technology, Sports and Culture, Japan, and also supported by the Shorai Scientific Foundation.

Supporting Information Available: Syntheses, spectroscopic analyses of the association dimer formation, pK_a determination, and further results on the effect of HCO₃⁻ (pdf). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) de Silva, A. P.; Gunaratne, H. Q. N.; Huxley, A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. **1997**, 97, 1515–1566. (b) Schmidtchen, F. P.; Berger, M. Chem. Rev. **1997**, 97, 1609–1646. (c) Hartley, J. H.; James, T. D.; Ward, C. J. J. Chem. Soc., Perkin Trans. I **2000**, 3155–3184. (d) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. **2000**, 100, 2534–2574. (e) Beer, P. D.; Gale, P. D. Angew. Chem., Int. Ed. **2001**, 40, 486-516.
- (2) (a) Yamauchi, A.; Hayashita, T.; Nishizawa, S.; Watanabe, M.; Teramae, N. J. Am. Chem. Soc. 1999, 121, 2319–2320. (b) Kwon, J. K.; Singh, N. J.; Kim, H. N.; Kim, S. K.; Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2004, 126, 8892–8893. (c) Aoki, S.; Kagata, D.; Shiro, M.; Takeda, K.; Kimura, E. J. Am. Chem. Soc. 2004, 126, 13377–13390. (d) Zhang, J.; Davidson, M. G.; Mahon, M. F.; Kociok-Köhn, G.; James, T. D. J. Am. Chem. Soc. 2004, 126, 16179–16186.
- (3) (a) Kimura, E. Acc. Chem. Res. 2001, 34, 171–179. (b) Linares, J. M.; Powell, D.; Bowman-James, K. Coord. Chem. Rev. 2003, 240, 57–75.
 (c) Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc. 2005, 127, 3373– 3379.
- (4) (a) Beer, P. D.; Cadman, J.; Lloris, J. M.; Martínez-Máòez, R.; Padilla, M. E.; Pardo, T.; Smith, D. K.; Soto, J. J. Chem. Soc., Dalton Trans. 1999, 127–133. (b) Mizutani, S.; Nagano, T.; Urano, Y.; Odani, A.; Kikuchi, K. J. Am. Chem. Soc. 2002, 124, 3920–3925. (c) Badugu, R.; Lakowicz, J. R.; Geddes, C. D. J. Am. Chem. Soc. 2005, 127, 3635–3641.
- (5) (a) Zhang, X.; von Eldic, R.; Koike, T.; Kimura, E. *Inorg. Chem.* 1993, 32, 5749–5755.
 (b) Bruce, J. I.; Dickins, R. S.; Govenlock, L. J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M. P.; Peacock, R. D.; Perry, J. J. B.; Aime, S.; Botta, M. *J. Am. Chem. Soc.* 2000, 122, 9674–9684. (c) Hennrich, G.; Sonnenshein, H.; Resch-Genger, U. *Tetrahedron Lett.* 2001, 42, 2805–2808. (d) Bretonnliere, Y.; Cann, M. J.; Slater, R. *Org. Bioorg. Chem.* 2004, 2, 1624–1632.
- (6) (a) Chen, Y.; Cann, M. J.; Litvin, T. N.; Iourgenko, V.; Sinclair, M. L.; Levin, L. R.; Buck, J. Science 2000, 289, 625–628. (b) Zippin, J. H.; Levin, L. R.; Buck, J. Trends Endocrinol. Metab. 2001, 12, 366–370.
 (7) Ueno, A.; Suzuki, I.; Osa, T. J. Am. Chem. Soc. 1989, 111, 6391–6397.
- (8) The observed increase in monomer fluorescence under diluted conditions implies that 1⁺ (monomer) may bind HCO₃⁻. However, the weak and noisy spectra under these conditions prevented us from determining the binding constant of 1⁺ with HCO₃⁻. None of the anions investigated increased the fluorescence of 1⁺.
- (9) See Supporting Information for complete details of the association dimer formation of **1**.
- (10) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry; Tokyo-Kagaku-Dojin: Tokyo, 1982.
- (11) Wahl, P.; Krieger, C.; Schweitzer, D.; Staab, H. A. Chem. Ber. 1984, 117, 260–276.

JA055772F